D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.

نویسندگان

  • M N Kazarinoff
  • E E Snell
چکیده

D-Serine apodehydratase from Escherichia coli is rapidly inactivated by butanedione in K+ borate buffer or by phenylglyoxal in K+ phosphate buffer at pH 8, 25 degrees. Pyridoxal-P protects against the inactivation. Modification of the apoenzyme abolishes its ability to bind the cofactor, pyridoxal-P, but the apparent Km for the substrate, D-serine, is not altered. The concentration dependence of the rate of butanedione inactivation in K+ borate buffer indicates that it is a two-step process with one butanedione bound per molecule of apoenzyme to give an inactive complex; half-maximal rate of inactivation is obtained at 37 mM butanedione. Butanedione inactivation is fully reversed following removal of excess reagent and borate. Similar studies with [14C]phenylglyoxal show that in the presence of pyridoxal-P at least 2 arginine residues may be modified without loss of activity. In the absence of pyridoxal-P modification of a single additional arginine residue results in loss of activity. Results with both inactivating reagents thus demonstrate that a critical arginine residue participates in binding of the coenzyme, pyridoxal-P. The stoichiometry of phenylglyoxal incorporation into the enzyme is different in the presence and absence of borate. Under both conditions incorporated phenylglyoxal is slowly lost on dialysis at neutral pH. A possible explanation of these effects is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a conserved arginine residue during catalysis in serine palmitoyltransferase.

All sphingolipid-producing organisms require the pyridoxal 5'-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse the first reaction on the de novo sphingolipid biosynthetic pathway. SPT is a member of the alpha oxoamine synthase (AOS) family that catalyses a Claisen-like condensation of palmitoyl-CoA and L-serine to form 3-ketodihydrosphingosine (KDS). Protein sequence alig...

متن کامل

Gene cloning, purification, and characterization of 2,3-diaminopropionate ammonia-lyase from Escherichia coli.

2,3-Diaminopropionate ammonia-lyase (DAPAL), which catalyzes alpha,beta-elimination of 2,3-diaminopropionate regardless of its stereochemistry, was purified from Salmonella typhimurium. We cloned the Escherichia coli ygeX gene encoding a putative DAPAL and purified the gene product to homogeneity. The protein obtained contained pyridoxal 5'-phosphate and was composed of two identical subunits w...

متن کامل

Gene cloning and expression of pyridoxal 5'-phosphate-dependent L-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62, and characterization of the recombinant enzyme.

L-threo-3-Hydroxyaspartate dehydratase (L-THA DH, EC 4.3.1.16), which catalyses the cleavage of L-threo-3-hydroxyaspartate (L-THA) to oxalacetate and ammonia, has been purified from the soil bacterium Pseudomonas sp. T62. In this report, the gene encoding L-THA DH was cloned and expressed in Escherichia coli, and the gene product was purified and characterized in detail. A 957-bp nucleotide fra...

متن کامل

Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis.

Histidine 228 at the active site of Escherichia coli serine hydroxymethyltransferase was replaced with an asparagine. The mutant enzyme was expressed in a strain of E. coli that lacks wild type enzyme. Absorption spectra, circular dichroism spectra, and differential scanning calorimetry thermograms suggest that the amino acid change at the active site causes no detectable change in the tertiary...

متن کامل

Deamination of serine. II. D-Serine dehydrase, a vitamin B6 enzyme from Escherichia coli.

Non-enzymatic deamination of serine and cysteine is catalyzed by pyridoxal and certain metal salts at 100” (2). This finding suggested that pyridoxal phosphate might be involved in the enzymatic deamination of these amino acids. Vitamin B, has already been implicated in the desulfhydration of cysteine by rat liver (3) and of cysteine and homocysteine by bacteria (4). Several similarities of cys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 251 20  شماره 

صفحات  -

تاریخ انتشار 1976